Phosphorylation and Transport in the Na-K-2Cl Cotransporters, NKCC1 and NKCC2A, Compared in HEK-293 Cells
نویسندگان
چکیده
Na-K-2Cl cotransporters help determine cell composition and volume. NKCC1 is widely distributed whilst NKCC2 is only found in the kidney where it plays a vital role reabsorbing 20% of filtered NaCl. NKCC2 regulation is poorly understood because of its restricted distribution and difficulties with its expression in mammalian cell cultures. Here we compare phosphorylation of the N-termini of the cotransporters, measured with phospho-specific antibodies, with bumetanide-sensitive transport of K(+) ((86)Rb(+)) (activity) in HEK-293 cells stably expressing fNKCC1 or fNKCC2A which were cloned from ferret kidney. Activities of transfected transporters were distinguished from those of endogenous ones by working at 37 °C. fNKCC1 and fNKCC2A activities were highest after pre-incubation of cells in hypotonic low-[Cl(-)] media to reduce cell [Cl(-)] and volume during flux measurement. Phosphorylation of both transporters more than doubled. Pre-incubation with ouabain also strongly stimulated fNKCC1 and fNKCC2A and substantially increased phosphorylation, whereas pre-incubation in Na(+)-free media maximally stimulated fNKCC1 and doubled its phosphorylation, but inhibited fNKCC2A, with a small increase in its phosphorylation. Kinase inhibitors halved phosphorylation and activity of both transporters whereas inhibition of phosphatases with calyculin A strongly increased phosphorylation of both transporters but only slightly stimulated fNKCC1 and inhibited fNCCC2A. Thus kinase inhibition reduced phosphorylation and transport, and transport stimulation was only seen when phosphorylation increased, but transport did not always increase with phosphorylation. This suggests phosphorylation of the N-termini determines the transporters' potential capacity to move ions, but final activity also depends on other factors. Transport cannot be reliably inferred solely using phospho-specific antibodies on whole-cell lysates.
منابع مشابه
Functional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl cotransporter in HEK-293 cells.
We have studied the regulation of the K-Cl cotransporter KCC1 and its functional interaction with the Na-K-Cl cotransporter. K-Cl cotransporter activity was substantially activated in HEK-293 cells overexpressing KCC1 (KCC1-HEK) by hypotonic cell swelling, 50 mM external K, and pretreatment with N-ethylmaleimide (NEM). Bumetanide inhibited 86Rb efflux in KCC1-HEK cells after cell swelling [inhi...
متن کاملWith no lysine L-WNK1 isoforms are negative regulators of the K+-Cl- cotransporters.
The K(+)-Cl(-) cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chlor...
متن کاملExpression of the Na-K-2Cl Cotransporter in Branchial Mitochondrion- Rich Cells of Mozambique Tilapia (Oreochromis mossambicus) Subjected to Varying Chloride Conditions
733 T he Na-K-2Cl cotransporter (NKCC) mediates the coupled movements of Na, K, and Clacross plasma membranes of animal cells. The NKCC plays an important role in ion movements across polarized epithelia and is also known to be involved in regulating cell volume and intracellular Cllevels (Lytle and Forbush 1996, Haas and Forbush 1998). The NKCC is a member of the Na-coupled group of cation-chl...
متن کاملThe Role of Na:K:2Cl Cotransporter 1 (NKCC1/SLC12A2) in Dental Epithelium during Enamel Formation in Mice
Na+:K+:2Cl- cotransporters (NKCCs) belong to the SLC12A family of cation-coupled Cl- transporters. We investigated whether enamel-producing mouse ameloblasts express NKCCs. Transcripts for Nkcc1 were identified in the mouse dental epithelium by RT-qPCR and NKCC1 protein was immunolocalized in outer enamel epithelium and in the papillary layer but not the ameloblast layer. In incisors of Nkcc1-n...
متن کاملRare mutations in the human Na-K-Cl cotransporter (NKCC2) associated with lower blood pressure exhibit impaired processing and transport function.
The Na-K-Cl cotransporter (NKCC2) is the major salt transport pathway in the thick ascending limb of Henle's loop and is part of the molecular mechanism for blood pressure regulation. Recent screening of ∼3,000 members of the Framingham Heart Study identified nine rare independent mutations in the gene encoding NKCC2 (SLC12A1) associated with clinically reduced blood pressure and protection fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011